# -*- coding: utf-8 -*-
"""IGraph based Label Space Clustering"""
from __future__ import absolute_import
import numpy as np
from builtins import range
from igraph import Graph
from .base import LabelGraphClustererBase
[docs]class IGraphLabelGraphClusterer(LabelGraphClustererBase):
"""Clusters the label space using igraph community detection methods
This clusterer constructs an igraph representation of the Label Graph generated by graph builder and detects
communities in it using community detection methods from the igraph library. Detected communities are converted to
a label space clustering. The approach has been described in `this paper concerning data-driven label space division
<http://www.mdpi.com/1099-4300/18/8/282/htm>`_.
Parameters
----------
graph_builder: a GraphBuilderBase inherited transformer
the graph builder to provide the adjacency matrix and weight map for the underlying graph
method: string
the community detection method to use, this clusterer supports the following community detection methods:
+----------------------+---------------------------------------------------------------------------------------+
| Method name string | Description |
+======================+=======================================================================================+
| fastgreedy_ | Detecting communities with largest modularity using incremental greedy search |
+----------------------+---------------------------------------------------------------------------------------+
| infomap_ | Detecting communities through information flow compressing simulated via random walks |
+----------------------+---------------------------------------------------------------------------------------+
| label_propagation_ | Detecting communities from colorings via multiple label propagation on the graph |
+----------------------+---------------------------------------------------------------------------------------+
| leading_eigenvector_ | Detecting communities with largest modularity through adjacency matrix eigenvectors |
+----------------------+---------------------------------------------------------------------------------------+
| multilevel_ | Recursive communitiy detection with largest modularity step by step maximization |
+----------------------+---------------------------------------------------------------------------------------+
| walktrap_ | Finding communities by trapping many random walks |
+----------------------+---------------------------------------------------------------------------------------+
.. _fastgreedy: http://igraph.org/python/doc/igraph.Graph-class.html#community_fastgreedy
.. _infomap: http://igraph.org/python/doc/igraph.Graph-class.html#community_infomap
.. _label_propagation: http://igraph.org/python/doc/igraph.Graph-class.html#community_label_propagation
.. _leading_eigenvector: http://igraph.org/python/doc/igraph.Graph-class.html#community_leading_eigenvector
.. _multilevel: http://igraph.org/python/doc/igraph.Graph-class.html#community_multilevel
.. _walktrap: http://igraph.org/python/doc/igraph.Graph-class.html#community_walktrap
Attributes
----------
graph_ : igraph.Graph
the igraph Graph object containing the graph representation of graph builder's adjacency matrix and weights
weights_ : { 'weight' : list of values in edge order of graph edges }
edge weights stored in a format recognizable by the igraph module
.. note ::
This clusterer is GPL-licenced and will taint your code with GPL restrictions.
References
----------
If you use this clusterer please cite the igraph paper and the clustering paper:
.. code:: latex
@Article{igraph,
title = {The igraph software package for complex network research},
author = {Gabor Csardi and Tamas Nepusz},
journal = {InterJournal},
volume = {Complex Systems},
pages = {1695},
year = {2006},
url = {http://igraph.org},
}
@Article{datadriven,
author = {SzymaĆski, Piotr and Kajdanowicz, Tomasz and Kersting, Kristian},
title = {How Is a Data-Driven Approach Better than Random Choice in
Label Space Division for Multi-Label Classification?},
journal = {Entropy},
volume = {18},
year = {2016},
number = {8},
article_number = {282},
url = {http://www.mdpi.com/1099-4300/18/8/282},
issn = {1099-4300},
doi = {10.3390/e18080282}
}
Examples
--------
An example code for using this clusterer with a classifier looks like this:
.. code-block:: python
from sklearn.ensemble import RandomForestClassifier
from skmultilearn.problem_transform import LabelPowerset
from skmultilearn.cluster import IGraphLabelGraphClusterer, LabelCooccurrenceGraphBuilder
from skmultilearn.ensemble import LabelSpacePartitioningClassifier
# construct base forest classifier
base_classifier = RandomForestClassifier(n_estimators=1000)
# construct a graph builder that will include
# label relations weighted by how many times they
# co-occurred in the data, without self-edges
graph_builder = LabelCooccurrenceGraphBuilder(
weighted = True,
include_self_edges = False
)
# setup problem transformation approach with sparse matrices for random forest
problem_transform_classifier = LabelPowerset(classifier=base_classifier,
require_dense=[False, False])
# setup the clusterer to use, we selected the fast greedy modularity-maximization approach
clusterer = IGraphLabelGraphClusterer(graph_builder=graph_builder, method='fastgreedy')
# setup the ensemble metaclassifier
classifier = LabelSpacePartitioningClassifier(problem_transform_classifier, clusterer)
# train
classifier.fit(X_train, y_train)
# predict
predictions = classifier.predict(X_test)
For more use cases see `the label relations exploration guide <../labelrelations.ipynb>`_.
"""
_METHODS = {
'fastgreedy': lambda graph, w=None: graph.community_fastgreedy(weights=w).as_clustering(),
'infomap': lambda graph, w=None: graph.community_infomap(edge_weights=w),
'label_propagation': lambda graph, w=None: graph.community_label_propagation(weights=w),
'leading_eigenvector': lambda graph, w=None: graph.community_leading_eigenvector(weights=w),
'multilevel': lambda graph, w=None: graph.community_multilevel(weights=w),
'walktrap': lambda graph, w=None: graph.community_walktrap(weights=w).as_clustering(),
}
def __init__(self, graph_builder, method):
super(IGraphLabelGraphClusterer, self).__init__(graph_builder)
self.method = method
if method not in IGraphLabelGraphClusterer._METHODS:
raise ValueError(
"{} not a supported igraph community detection method".format(method))
[docs] def fit_predict(self, X, y):
"""Performs clustering on y and returns list of label lists
Builds a label graph using the provided graph builder's `transform` method
on `y` and then detects communities using the selected `method`.
Sets :code:`self.weights_` and :code:`self.graph_`.
Parameters
----------
X : None
currently unused, left for scikit compatibility
y : scipy.sparse
label space of shape :code:`(n_samples, n_labels)`
Returns
-------
arrray of arrays of label indexes (numpy.ndarray)
label space division, each sublist represents labels that are in that community
"""
edge_map = self.graph_builder.transform(y)
if self.graph_builder.is_weighted:
self.weights_ = dict(weight=list(edge_map.values()))
else:
self.weights_ = dict(weight=None)
self.graph_ = Graph(
edges=[x for x in edge_map],
vertex_attrs=dict(name=list(range(1, y.shape[1] + 1))),
edge_attrs=self.weights_
)
return np.array(
IGraphLabelGraphClusterer._METHODS[self.method](self.graph_, self.weights_['weight'])
)