Source code for skmultilearn.ensemble.rakeld

from builtins import range
from .partition import LabelSpacePartitioningClassifier
import copy
import random
import numpy as np
from scipy import sparse

[docs]class RakelD(LabelSpacePartitioningClassifier): """Distinct RAndom k-labELsets multi-label classifier.""" def __init__(self, classifier=None, labelset_size=None, require_dense=None): super(RakelD, self).__init__( classifier=classifier, require_dense=require_dense) self.labelset_size = labelset_size self.copyable_attrs = ['labelset_size', 'classifier', 'require_dense']
[docs] def generate_partition(self, X, y): """Randomly partition the label space This function randomly partitions the label space of n_labels into n_label/k equipartitions of size k. :param X: not used, maintained for api compatibility :param y: binary indicator matrix with label assignments :type y: dense or sparse matrix of {0, 1} (n_samples, n_labels) Sets `self.partition`, `self.model_count` and `self.label_count`. """ label_sets = [] self.label_count = y.shape[1] free_labels = range(self.label_count) self.model_count = int(np.ceil(self.label_count / self.labelset_size)) while len(label_sets) <= self.model_count: if len(free_labels) == 0: break if len(free_labels) < self.labelset_size: label_sets.append(free_labels) continue label_set = random.sample(free_labels, self.labelset_size) free_labels = list(set(free_labels).difference(set(label_set))) label_sets.append(label_set) self.partition = label_sets