Source code for skmultilearn.cluster.base

# -*- coding: utf-8 -*-
from builtins import object

from ..utils import get_matrix_in_format
from sklearn.base import BaseEstimator

[docs]class GraphBuilderBase(object): """An abstract base class for a graph building class used in Label Space clustering. Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self): super(GraphBuilderBase, self).__init__()
[docs] def transform(self, y): """ Abstract method for graph edge map builder for a label space clusterer Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("GraphBuilderBase::transform()")
[docs]class LabelSpaceClustererBase(BaseEstimator): """An abstract base class for Label Space clustering Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self): super(LabelSpaceClustererBase, self).__init__()
[docs] def fit_predict(self, X, y): """ Abstract method for clustering label space Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("LabelSpaceClustererBase::fit_predict()")
[docs]class LabelGraphClustererBase(object): """An abstract base class for Label Graph clustering Inherit it in your classifier according to`developer guide <../developer.ipynb>`_. """ def __init__(self, graph_builder): """ Attributes ---------- graph_builder : a GraphBuilderBase derivative class a graph building class for the clusterer """ super(LabelGraphClustererBase, self).__init__() self.graph_builder = graph_builder
[docs] def fit_predict(self, X, y): """ Abstract method for clustering label space Implement it in your classifier according to`developer guide <../developer.ipynb>`_. Raises ------ NotImplementedError this is an abstract method """ raise NotImplementedError("LabelGraphClustererBase::fit_predict()")
[docs]class LabelCooccurrenceGraphBuilder(GraphBuilderBase): """Base class providing API and common functions for all label co-occurence based multi-label classifiers. This graph builder constructs a Label Graph based on the output matrix where two label nodes are connected when at least one sample is labeled with both of them. If the graph is weighted, the weight of an edge between two label nodes is the number of samples labeled with these two labels. Self-edge weights contain the number of samples with a given label. Parameters ---------- weighted: bool decide whether to generate a weighted or unweighted graph. include_self_edges : bool decide whether to include self-edge i.e. label 1 - label 1 in co-occurrence graph normalize_self_edges: bool if including self edges, divide the (i, i) edge by 2.0, requires include_self_edges=True References ---------- If you use this graph builder please cite the clustering paper: .. code:: latex @Article{datadriven, author = {SzymaƄski, Piotr and Kajdanowicz, Tomasz and Kersting, Kristian}, title = {How Is a Data-Driven Approach Better than Random Choice in Label Space Division for Multi-Label Classification?}, journal = {Entropy}, volume = {18}, year = {2016}, number = {8}, article_number = {282}, url = {http://www.mdpi.com/1099-4300/18/8/282}, issn = {1099-4300}, doi = {10.3390/e18080282} } Examples -------- A full example of building a modularity-based label space division based on the Label Co-occurrence Graph and classifying with a separate classifier chain per subspace. .. code :: python from skmultilearn.cluster import LabelCooccurrenceGraphBuilder, NetworkXLabelGraphClusterer from skmultilearn.ensemble import LabelSpacePartitioningClassifier from skmultilearn.problem_transform import ClassifierChain from sklearn.naive_bayes import GaussianNB graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False, normalize_self_edges=False) clusterer = NetworkXLabelGraphClusterer(graph_builder, method='louvain') classifier = LabelSpacePartitioningClassifier( classifier = ClassifierChain(classifier=GaussianNB()), clusterer = clusterer ) classifier.fit(X_train, y_train) prediction = classifier.predict(X_test) For more use cases see `the label relations exploration guide <../labelrelations.ipynb>`_. """ def __init__(self, weighted=None, include_self_edges=None, normalize_self_edges=None): super(LabelCooccurrenceGraphBuilder, self).__init__() if weighted not in [True, False]: raise ValueError("Weighted needs to be a boolean") if include_self_edges not in [True, False]: raise ValueError( "Decision whether to include self edges needs to be a boolean") if include_self_edges and (normalize_self_edges not in [True, False]): raise ValueError("Decision whether to normalize self edges needs to be a boolean") if normalize_self_edges and not include_self_edges: raise ValueError("Include self edges must be set to true if normalization is true") if normalize_self_edges and not weighted: raise ValueError("Normalizing self-edge weights_ does not make sense in an unweighted graph") self.is_weighted = weighted self.include_self_edges = include_self_edges self.normalize_self_edges = normalize_self_edges
[docs] def transform(self, y): """Generate adjacency matrix from label matrix This function generates a weighted or unweighted co-occurence Label Graph adjacency matrix in dictionary of keys format based on input binary label vectors Parameters ---------- y : numpy.ndarray or scipy.sparse dense or sparse binary matrix with shape :code:`(n_samples, n_labels)` Returns ------- Dict[(int, int), float] weight map with a tuple of label indexes as keys and a the number of samples in which the two co-occurred """ label_data = get_matrix_in_format(y, 'lil') label_count = label_data.shape[1] edge_map = {} for row in label_data.rows: if self.include_self_edges: pairs = [(a, b) for b in row for a in row if a <= b] else: pairs = [(a, b) for b in row for a in row if a < b] for p in pairs: if p not in edge_map: edge_map[p] = 1.0 else: if self.is_weighted: edge_map[p] += 1.0 if self.normalize_self_edges: for i in range(label_count): if (i, i) in edge_map: edge_map[(i, i)] = edge_map[(i, i)] / 2.0 return edge_map