scikit-multilearn
User Guide
Reference
Github
PyPi
About
User Guide
1. Introduction
2. Advanced usage
User Guide
¶
1. Introduction
¶
1. Getting started with scikit-multilearn
2. Relevant Concepts in Multi-Label Classification
2.1. Aim
2.2. Single-label vs multi-label classification
2.3. Multi-label classification data
2.3.1. The multi-label data representation
2.3.2. Single-label representations in problem transformation
3. Dataset handling
3.1. scikit-multilearn format
4. scikit-multilearn repository
4.1. ARFF files
5. How to select a classifier
5.1. Intutions
5.1.1. Generalization quality measures
5.1.2. Performance
5.2. Data-driven model selection
5.2.1. Estimating hyper-parameter k for MLkNN
5.2.2. Estimating hyper-parameter k for embedded classifiers
2. Advanced usage
¶
1. Exploring Label Relations
1.1. Detecting communities in Label Relations Graph
1.1.1. Building a Label Graph
1.1.2. NetworkX
2. Using iGraph
3. Stochastic Blockmodel from graph-tool
3.1. Using scikit-learn clusterers
3.2. Fixed partition based on expert knowledge
4. Using the MEKA wrapper
4.1. Setting up MEKA
4.2. Using MEKA via scikit-multilearn
4.3. Citing meka
5. Multi-label deep learning with scikit-multilearn
5.1. Keras
5.1.1. Single-class Keras classifier
5.1.2. Multi-class Keras classifier
5.2. Pytorch
5.2.1. Single-class pytorch classifier
5.2.2. Multi-class pytorch classifier
6. Multi-label embedding-based classification
6.1. Label Network Embeddings
6.2. Cost-Sensitive Label Embedding with Multidimensional Scaling
6.3. Scikit-learn based embedders
7. Multi-label data stratification
Navigation
index
modules
|
next
|
previous
|
scikit-multilearn
»