Source code for skmultilearn.cluster.fixed

from __future__ import absolute_import
from .base import LabelSpaceClustererBase

[docs]class FixedLabelSpaceClusterer(LabelSpaceClustererBase): """Return a fixed label space partition This clusterer takes a predefined fixed ``clustering`` of the label space and returns it in fit_predict as the label space division. This is useful for employing expert knowledge about label space division or partitions in ensemble classifiers such as: :class:`~skmultilearn.ensemble.LabelSpacePartitioningClassifier` or :class:`~skmultilearn.ensemble.MajorityVotingClassifier`. Parameters ---------- clusters : array of arrays of int provided partition of the label space in the for of numpy array of numpy arrays of indexes for each partition, ex. ``[[0,1],[2,3]]`` An example use of the fixed clusterer with a label partitioning classifier to train randomforests for a set of subproblems defined upon expert knowledge: .. code :: python from skmultilearn.ensemble import LabelSpacePartitioningClassifier from skmultilearn.cluster import FixedLabelSpaceClusterer from skmultilearn.problem_transform import LabelPowerset from sklearn.ensemble import RandomForestClassifier classifier = LabelSpacePartitioningClassifier( classifier = LabelPowerset( classifier=RandomForestClassifier(n_estimators=100), require_dense = [False, True] ), require_dense = [True, True], clusterer = FixedLabelSpaceClusterer(clustering=[[1,2,3], [0,4]]) ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) """ def __init__(self, clusters=None): super(FixedLabelSpaceClusterer, self).__init__() self.clusters = clusters
[docs] def fit_predict(self, X, y): """Returns the provided label space division Parameters ---------- X : None currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ return self.clusters