skmultilearn.dataset module¶
-
skmultilearn.dataset.
available_data_sets
()[source]¶ Lists available data sets and their variants
Returns: available datasets and their variants with the key pertaining to the (set_name, variant_name)
and values include md5 and file name on serverReturn type: dict[(set_name, variant_name)] -> [md5, file_name]
-
skmultilearn.dataset.
clear_data_home
(data_home=None)[source]¶ Delete all the content of the data home cache.
Parameters: data_home (str (default is None)) – the path to the directory in which scikit-multilearn data sets should be stored.
-
skmultilearn.dataset.
download_dataset
(set_name, variant, data_home=None)[source]¶ Downloads a data set
Parameters: - set_name (str) – name of set from
available_data_sets()
- variant (str) – variant of the data set from
available_data_sets()
- data_home (default None, str) – custom base folder for data, if None, default is used
Returns: path to the downloaded data set file on disk
Return type: - set_name (str) – name of set from
-
skmultilearn.dataset.
get_data_home
(data_home=None, subdirectory='')[source]¶ Return the path of the scikit-multilearn data dir.
This folder is used by some large dataset loaders to avoid downloading the data several times.
By default the
data_home
is set to a folder named'scikit_ml_learn_data'
in the user home folder.Alternatively, it can be set by the
'SCIKIT_ML_LEARN_DATA'
environment variable or programmatically by giving an explicit folder path. The'~'
symbol is expanded to the user home folder.If the folder does not already exist, it is automatically created.
Parameters: Returns: the path to the data home
Return type:
-
skmultilearn.dataset.
load_dataset
(set_name, variant, data_home=None)[source]¶ Loads a selected variant of the given data set
Parameters: - set_name (str) – name of set from
available_data_sets()
- variant (str) – variant of the data set
- data_home (default None, str) – custom base folder for data, if None, default is used
Returns: the loaded multilabel data set variant in the scikit-multilearn format, see data_sets
Return type: - set_name (str) – name of set from
-
skmultilearn.dataset.
load_dataset_dump
(filename)[source]¶ Loads a compressed data set dump
Parameters: filename (str) – path to dump file, if without .bz2 ending, the .bz2 extension will be appended. Returns: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments - names of attributes (List[str]) – list of attribute names for X columns
- names of labels (List[str]) – list of label names for y columns
- X (array_like,
-
skmultilearn.dataset.
load_from_arff
(filename, label_count, label_location='end', input_feature_type='float', encode_nominal=True, load_sparse=False, return_attribute_definitions=False)[source]¶ Method for loading ARFF files as numpy array
Parameters: - filename (str) – path to ARFF file
- labelcount (integer) – number of labels in the ARFF file
- endian (str {"big", "little"} (default is "big")) – whether the ARFF file contains labels at the beginning of the attributes list (“start”, MEKA format) or at the end (“end”, MULAN format)
- input_feature_type (numpy.type as string (default is "float")) – the desire type of the contents of the return ‘X’ array-likes, default ‘i8’, should be a numpy type, see http://docs.scipy.org/doc/numpy/user/basics.types.html
- encode_nominal (bool (default is True)) – whether convert categorical data into numeric factors - required for some scikit classifiers that can’t handle non-numeric input features.
- load_sparse (boolean (default is False)) – whether to read arff file as a sparse file format, liac-arff breaks if sparse reading is enabled for non-sparse ARFFs.
- return_attribute_definitions (boolean (default is False)) – whether to return the definitions for each attribute in the dataset
Returns: - X (
scipy.sparse.lil_matrix
of input_feature_type, shape=(n_samples, n_features)) – input feature matrix - y (
scipy.sparse.lil_matrix
of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments - names of attributes (List[str]) – list of attribute names from ARFF file
-
skmultilearn.dataset.
save_dataset_dump
(input_space, labels, feature_names, label_names, filename=None)[source]¶ Saves a compressed data set dump
Parameters: - input_space (array-like of array-likes) – Input space array-like of input feature vectors
- labels (array-like of binary label vectors) – Array-like of labels assigned to each input vector, as a binary indicator vector (i.e. if 5th position has value 1 then the input vector has label no. 5)
- feature_names (array-like,optional) – names of features
- label_names (array-like, optional) – names of labels
- filename (str, optional) – Path to dump file, if without .bz2, the .bz2 extension will be appended.
-
skmultilearn.dataset.
save_to_arff
(X, y, label_location='end', save_sparse=True, filename=None)[source]¶ Method for dumping data to ARFF files
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments - label_location (string {"start", "end"} (default is "end")) – whether the ARFF file will contain labels at the beginning of the attributes list (“start”, MEKA format) or at the end (“end”, MULAN format)
- save_sparse (boolean) – Whether to save in ARFF’s sparse dictionary-like format instead of listing all zeroes within file, very useful in multi-label classification.
- filename (str or None) – Path to ARFF file, if None, the ARFF representation is returned as string
Returns: the ARFF dump string, if filename is None
Return type: - X (array_like,