Cost-Sensitive Label Embedding with Multidimensional Scaling¶
-
class
skmultilearn.embedding.
CLEMS
(measure, is_score=False, params=None)[source]¶ Bases:
sklearn.base.BaseEstimator
Embed the label space using a label network embedder from OpenNE
Parameters: - measure (Callable) – a cost function executed on two label vectors
- dimension (int) – the dimension of the label embedding vectors
- is_score (boolean) – set to True if measures is a score function (higher value is better), False if loss function (lower is better)
- param_dict (dict or None) – parameters passed to the embedder, don’t use the dimension and graph parameters, this class will set them at fit
Example code for using this embedder looks like this:
from skmultilearn.embedding import CLEMS, EmbeddingClassifier from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN from sklearn.metrics import accuracy_score clf = EmbeddingClassifier( CLEMS(accuracy_score, True), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
-
fit
(X, y)[source]¶ Fits the embedder to data
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments
Returns: fitted instance of self
Return type: self
- X (array_like,
-
fit_transform
(X, y)[source]¶ Fit the embedder and transform the output space
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments
Returns: results of the embedding, input and output space
Return type: X, y_embedded
- X (array_like,