scikit-learn based embeddings¶
-
class
skmultilearn.embedding.
SKLearnEmbedder
(embedder=None, pass_input_space=False)[source]¶ Bases:
sklearn.base.BaseEstimator
Embed the label space using a scikit-compatible matrix-based embedder
Parameters: - embedder (sklearn.base.BaseEstimator) – a clonable instance of a scikit-compatible embedder, will be automatically
put under
self.embedder
, see . - pass_input_space (bool (default is False)) – whether to take
X
into consideration upon clustering, use only if you know that the embedder can handle two parameters for clustering, will be automatically put underself.pass_input_space
.
Example code for using this embedder looks like this:
from skmultilearn.embedding import SKLearnEmbedder, EmbeddingClassifier from sklearn.manifold import SpectralEmbedding from sklearn.ensemble import RandomForestRegressor from skmultilearn.adapt import MLkNN clf = EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components = 10)), RandomForestRegressor(n_estimators=10), MLkNN(k=5) ) clf.fit(X_train, y_train) predictions = clf.predict(X_test)
-
fit
(X, y)[source]¶ Fits the embedder to data
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments
Returns: fitted instance of self
Return type: self
- X (array_like,
-
fit_transform
(X, y)[source]¶ Fit the embedder and transform the output space
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments
Returns: results of the embedding, input and output space
Return type: X, y_embedded
- X (array_like,
- embedder (sklearn.base.BaseEstimator) – a clonable instance of a scikit-compatible embedder, will be automatically
put under