Classifier Chains¶
-
class
skmultilearn.problem_transform.
ClassifierChain
(classifier=None, require_dense=None, order=None)[source]¶ Bases:
skmultilearn.base.problem_transformation.ProblemTransformationBase
Constructs a bayesian conditioned chain of per label classifiers
This class provides implementation of Jesse Read’s problem transformation method called Classifier Chains. For L labels it trains L classifiers ordered in a chain according to the Bayesian chain rule.
The first classifier is trained just on the input space, and then each next classifier is trained on the input space and all previous classifiers in the chain.
The default classifier chains follow the same ordering as provided in the training set, i.e. label in column 0, then 1, etc.
Parameters: - classifier (
BaseEstimator
) – scikit-learn compatible base classifier - require_dense ([bool, bool], optional) – whether the base classifier requires dense representations
for input features and classes/labels matrices in fit/predict.
If value not provided, sparse representations are used if base classifier is
an instance of
MLClassifierBase
and dense otherwise. - order (List[int], permutation of
range(n_labels)
, optional) – the order in which the chain should go through labels, the default isrange(n_labels)
-
classifiers_
¶ list of classifiers trained per partition, set in
fit()
Type: List[ BaseEstimator
] of shape n_labels
References
If used, please cite the scikit-multilearn library and the relevant paper:
@inproceedings{read2009classifier, title={Classifier chains for multi-label classification}, author={Read, Jesse and Pfahringer, Bernhard and Holmes, Geoff and Frank, Eibe}, booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases}, pages={254--269}, year={2009}, organization={Springer} }
Examples
An example use case for Classifier Chains with an
sklearn.svm.SVC
base classifier which supports sparse input:from skmultilearn.problem_transform import ClassifierChain from sklearn.svm import SVC # initialize Classifier Chain multi-label classifier # with an SVM classifier # SVM in scikit only supports the X matrix in sparse representation classifier = ClassifierChain( classifier = SVC(), require_dense = [False, True] ) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test)
Another way to use this classifier is to select the best scenario from a set of single-label classifiers used with Classifier Chain, this can be done using cross validation grid search. In the example below, the model with highest accuracy results is selected from either a
sklearn.naive_bayes.MultinomialNB
orsklearn.svm.SVC
base classifier, alongside with best parameters for that base classifier.from skmultilearn.problem_transform import ClassifierChain from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC parameters = [ { 'classifier': [MultinomialNB()], 'classifier__alpha': [0.7, 1.0], }, { 'classifier': [SVC()], 'classifier__kernel': ['rbf', 'linear'], }, ] clf = GridSearchCV(ClassifierChain(), parameters, scoring='accuracy') clf.fit(x, y) print (clf.best_params_, clf.best_score_) # result # {'classifier': MultinomialNB(alpha=0.7, class_prior=None, fit_prior=True), 'classifier__alpha': 0.7} 0.16
-
fit
(X, y, order=None)[source]¶ Fits classifier to training data
Parameters: - X (array_like,
numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrix - y (array_like,
numpy.matrix
orscipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)) – binary indicator matrix with label assignments
Returns: fitted instance of self
Return type: self
Notes
Note
Input matrices are converted to sparse format internally if a numpy representation is passed
- X (array_like,
-
predict
(X)[source]¶ Predict labels for X
Parameters: X (array_like, numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrixReturns: binary indicator matrix with label assignments Return type: scipy.sparse
matrix of {0, 1}, shape=(n_samples, n_labels)
-
predict_proba
(X)[source]¶ Predict probabilities of label assignments for X
Parameters: X (array_like, numpy.matrix
orscipy.sparse
matrix, shape=(n_samples, n_features)) – input feature matrixReturns: matrix with label assignment probabilities Return type: scipy.sparse
matrix of float in [0.0, 1.0], shape=(n_samples, n_labels)
- classifier (